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Abstract—We study stochastic gradient descent (SGD) in the
master-worker architecture under Byzantine attacks. Building
upon the recent advances in algorithmic high-dimensional robust
statistics, in each SGD iteration, master employs a non-trivial de-
coding to estimate the true gradient from the unbiased stochastic
gradients received from workers, some of which may be corrupt.

We provide convergence analyses for both strongly-convex and
non-convex smooth objectives under standard SGD assumptions.
We can control the approximation error of our solution in both
these settings by the mini-batch size of stochastic gradients; and
we can make the approximation error as small as we want,
provided that workers use a sufficiently large mini-batch size.
Our algorithm can tolerate less than 1

3
fraction of Byzantine

workers. It can approximately find the optimal parameters in
the strongly-convex setting exponentially fast, and reaches to an
approximate stationary point in the non-convex setting with linear
speed, i.e., with a rate of 1

T
, thus, matching the convergence rates

of vanilla SGD in the Byzantine-free setting.

I. INTRODUCTION

Stochastic gradient descent (SGD) [1] is the main workhorse

behind the optimization procedure in several modern large-

scale learning algorithms [2]. In this paper, we consider a

master-worker architecture, where the training data is dis-

tributed across several machines (workers) and a central node

(master) wants to learn a machine learning model using

SGD [3]. This setting naturally arises in the case of federated

learning [4], [5], where user devices are recruited to help build

machine learning models. This can also arise in a distributed

setup, where data is partitioned and stored in many servers

to speed up the computation. In such scenarios, the recruited

worker nodes may not be trusted with their computation,

either because of non-Byzantine failures, such as software

bugs, noisy training data, etc., or because of Byzantine attacks,

where corrupt nodes may manipulate the information to their

advantage [6]. These Byzantine adversaries may collaborate

and arbitrarily deviate from their pre-specified programs.

Training machine learning models in the presence of Byzantine

attacks has received attention lately [7]–[18] and also in the

context of the Internet of Battlefield Things (IoBT) [19]. The

importance of this problem motivates us to study Byzantine-

resilient optimization algorithms that are suitable for large-

scale learning problems. See Section I-A where we put our

work in context.

In this paper, we study empirical risk minimization using

parallel mini-batch SGD in the presence of Byzantine ad-

versaries, where all workers can access the data, and master

iteratively builds a machine learning model using the gradients

computed at the workers. We do not make any probabilisitic

assumption on data generation. In our setup, an ǫ-fraction of

workers may be under Byzantine attacks (where ǫ > 0 is

a constant), and corrupt workers may collaborate and report

adversarially chosen gradients to the master. We propose

a method using tools from high-dimensional robust mean

estimation [20]–[23] that can tolerate less than 1

3
fraction

of corrupt workers. In particular, we use the outlier-filtering

procedure from [22] to filter-out corrupt gradients in each SGD

iteration.

Our contributions. We provide convergence analyses for

both strongly-convex and non-convex smooth objectives under

standard SGD assumptions; see Theorem 1. In the strongly-

convex case, our algorithm can find optimal parameters within

an approximation error of O( σ
2

bR
+ σ

2
dǫ̂

bR
) (where ǫ̂ > ǫ is any

constant and b is the mini-batch size for stochastic gradients)

“exponentially fast”; and in the non-convex case, it can find

an approximate stationary point within the same error with

“linear speed”, i.e., with a rate of 1

T
. The first term σ

2

bR
in the

approximation error is the standard SGD variance term and

the second term σ
2
dǫ

′

bR
is due to Byzantine attacks. Note that

both these terms can be made small by taking a large batch

size b. Also note that, in order to use the decoding algorithm

of [22], we need to prove a concentration result (as stated in

Theorem 2), which we show by building upon some tools in

[22]. To the best of our knowledge, this is the first paper that

studies Byzantine-resilient SGD under standard assumptions

and provides convergence analyses for both strongly-convex

and non-convex smooth objectives.

A. Related work

Byzantine-resilient distributed computing has a long history

[6] and is a very well studied topic, which has received recent

attention in the context of distributed learning [7]–[18]. The

approach taken to tackle the Byzantine attacks in literature can

be broadly divided into two categories: [7]–[12], [18] make

statistical assumptions, either on the data (e.g., i.i.d. data) or on

the algorithm (e.g., SGD), together with a non-trivial decoding

at the master; [13]–[17] employ coding-theoretic/redundancy-

based techniques to mitigate Byzantine attacks. The setting

of [9], [12], [18] is similar to ours: Using martingale-based

methods, [9] shows convergence under the assumption that

the stochastic error in gradients is bounded with probability 1

(instead of assuming bounded variance); [12] considers non-

convex objectives and shows an almost sure convergence of



gradients under stringent conditions; and [18] studies linear

regression only – it removes corrupt nodes based on norm-

filtering and achieves an error that scales with the number

of data points. In this paper, we consider mini-batch SGD

(without making probabilistic assumptions on the data), and

unlike previous works, we can control the approximation error

by the mini-batch size of stochastic gradients – larger the batch

size, better the accuracy.

There have been works in full-batch gradient descent against

Byzantine attacks, where data at workers is drawn i.i.d. from

a probability distribution, and the goal is to minimize the

population risk [7], [8], [10], [11]. In the following, n denotes

the number of data points that each worker has and R denotes

the total number of workers. [7] employed coordinate-wise

median and trimmed median, and gave an approximation error

of Õ( d2

nR )1 for both convex and non-convex objectives, which

could be prohibitive in high-dimensional problems; [11] and

[10] considered only strongly-convex objectives, where [11]

used decoding based on median-of-means and gave an error

of Õ( ǫdn ), and [10] improved it to Õ( d
nR ) for constant ǫ – ob-

serve that these papers only study strongly-convex objectives,

whereas, in addition, we study non-convex objectives too. The

decoding algorithm in [10] is taken from [22], which is based

on robust mean estimation, and we also use that algorithm

in our decoding. [8] proposed and analyzed an algorithm

to avoid saddle-point attacks in non-convex problems and

provided second-order convergence guarantees, and we believe

that our results can also be extended to combat the saddle-

point attacks in non-convex problems, which we leave as

part of the future work. In the high-dimensional setting,

they also used the decoding algorithm of [22] and gave an

approximation error of Õ( d
nR ). Note that these results are not

directly comparable to ours, as they study full-batch gradient

descent and assume that the workers’ training data come i.i.d.

from a probability distribution and minimize population risk,

which is different from our parallel SGD setup, where there

is no data distribution and we minimize empirical risk; and

instead of taking full gradients, we work with a relaxed mini-

batch stochastic gradients. As it turns out, an advantage of

doing mini-batch SGD (over full-batch GD) is that it allows

a tradeoff between the mini-batch size and the approximation

error.

Though, similar to [8], [10], we also use the same decoding

algorithm of [22] to combat Byzantine attacks, however, there

are technical differences between ours and these works. In

order to use the decoding algorithm of [22], both these works

derive a matrix concentration bound, the need of which arises

because they minimize the population risk. In this paper,

since we minimize the empirical risk, we do not need such a

result. However, we also need to prove a concentration bound

(which is of a very different nature than theirs and is stated in

Theorem 2), the need of which arises because the gradients in

our work are stochastic due to SGD – if we work with full-

batch deterministic gradients as in [8], [10], we would not

1The Õ and Ω̃ notations hide logarithmic factors.

need any such concentration bounds.

Paper organization. We describe the problem setup in

Section II and state our main convergence results for strongly-

convex and non-convex objectives in Section III. We describe

how we use the robust mean estimation result of [22] in our

SGD setting in Section IV. The omitted proofs from this paper

can be derived as special cases from the full version [24],

which studies Byzantine-resilient SGD in a more general

heterogeneous data setting.

II. PROBLEM SETUP

We are given n training samples {s1, . . . , sn} in R
d, and

we want to learn a model x ∈ R
d that minimizes the average

empirical risk 1
n

∑n
i=1 Fi(x), where Fi : ❘

d → ❘ is the risk

associated with the i’th sample si. In other words, we want to

solve the following unconstrained minimization problem:

arg min
x∈❘d

(
F (x) :=

1

n

n∑

i=1

Fi(x)

)
. (1)

When F is strongly-convex, let the minimization in (1) be

attained at x∗. In the case of non-convex F , as standard

in literature, we find a stationary point where the gradient

becomes zero.

We can minimize (1) using stochastic gradient descent

(SGD), which is an iterative algorithm that updates the pa-

rameters according to the following update rule:

xt+1 = xt − η∇Fit(x
t), t = 1, 2, 3, . . . (2)

where it ∈U [n] is sampled uniformly at random from

[n] := {1, 2, . . . , n} and η is a constant step-size. Note that

Ei∈U [n][∇Fi(x)] = ∇F (x) holds for all x ∈ R
d. We make a

standard assumption about SGD, namely, the bounded variance

assumption, which states that Ei∈U [n]‖∇Fi(x)−∇F (x)‖2 ≤
σ2 < ∞ holds for every x ∈ R

d.

In the master-worker architecture for parallel SGD, based on

the current parameter vector, workers send unbiased stochastic

gradients to the master, which, upon receiving the gradients,

updates the parameter vector iteratively. Concretely, at the

t’th iteration, master broadcasts xt; each worker r ∈ [R]
sends gr(x

t) := ∇Frt(x
t) to the master for a randomly

chosen rt ∈U [n], independent of the choice of other workers;

master updates the parameter vector according to xt+1 =
xt − η 1

R

∑R
r=1 ∇gr(x

t). Since the variance of the average

stochastic gradients reduces by a factor of R, this speeds up

the SGD convergence.

This aggregation rule at the master (i.e., the averaging) is

vulnerable to Byzantine attacks, where, instead of sending

the true stochastic gradients, the corrupt workers may send

adversarially chosen vectors to disrupt the computation. It

is known that even a single Byzantine worker can prevent

the algorithm to convergence, even worse, it can cause the

algorithm to converge to an adversarially chosen point [12].

Our adversary model is described next.

Adversary model. We assume that an ǫ fraction of R
workers are corrupt (where ǫ > 0 is a constant and we will



decide its value later). The corrupt workers can collaborate and

arbitrarily deviate from their pre-specified programs: In any

SGD iteration, instead of sending the true stochastic gradients,

corrupt workers may send adversarially chosen vectors (they

may not even send anything if they wish, in which case master

can treat them as erasures and replace them with a fixed value).

Observe that, in the erasure case, master knows which workers

are corrupt; whereas, in the Byzantine problem, master does

not have this information, which makes solving this problem

challenging; see also Section IV for a more detailed discussion

on why solving this problem in general is difficult.

III. OUR RESULTS

We tackle the Byzantine behavior of corrupt workers by

applying a non-trivial decoding algorithm at the master node in

each iteration of the parallel SGD algorithm; see Algorithm 1.

Our decoding algorithm is inspired by the recent breakthrough

results in theoretical computer science for robust mean estima-

tion [20]–[22], and we use the outlier-filtering algorithm from

[22], in particular.

Before stating our results, we need to formally define mini-

batch SGD. Note that we can further speed up the convergence

of parallel SGD by having each worker sample many data

points (without replacement), say, b ≥ 1 data points, and send

the average gradients on these data points to the master. This

is called mini-batch SGD. To formalize this, for any x ∈ R
d,

consider the following set

F⊗b(x) :=
{
1

b

∑

i∈H

∇Fi(x) : H ∈
(
[n]

b

)}
. (3)

Note that each element of F⊗b(x) is the average of b randomly

chosen elements (without replacement) of F(x) := F⊗1(x).
It is not hard to show that if we pick an element from F⊗b(x)
uniformly at random, its mean remains unchanged and is equal

to ∇F (x) = 1
n

∑n
i=1 ∇Fi(x), and the variance reduces by a

factor of b, i.e.,

EZ←F⊗b(x) [Z] = ∇F (x), (4)

EZ←F⊗b(x) ‖Z −∇F (x)‖2 ≤ σ2

b
. (5)

In this modified setup, we can equivalently describe our paral-

lel mini-batch SGD algorithm as follows: At the t’th iteration,

upon receiving the parameter vector xt from the master, each

worker r ∈ [R] samples gr(x
t) ∈U F⊗b(xt) (independent

of the other workers) and sends it to the master. Suppose the

master receives g̃1(x
t), . . . , g̃R(x

t), where g̃r(x
t) = gr(x

t)
if the r’th worker is honest, otherwise can be arbitrary. Note

that E[gr(x
t)] = ∇F (xt) and E‖gr(x

t) − ∇F (xt)‖2 ≤ σ2

b
holds for every r ∈ [R]. Upon receiving {g̃r(x

t)}r∈[R],

master applies a decoding algorithm (from [22]; see also the

discussion in Section IV) and outputs ĝ(xt) (which is an

estimate of ∇F (xt)), based on which it updates the parameters

according to (6). The goal of the master is to estimate ∇F (xt)
as accurately as possible in each SGD iteration. We present

our Byzantine-resilient SGD algorithm in Algorithm 1.

Algorithm 1 Byzantine-Resilient SGD

1: Initialize. Set x0 := 0. Fix a constant step-size η and a mini-
batch size b.

2: for t = 0 to T − 1 do
3: On Workers:
4: for r = 1 to R do
5: Receive xt from master. Take a mini-batch stochastic

gradient gr(x
t) ∈U F⊗b(xt).

6: g̃r(x
t) =

{

gr(x
t) if worker r is honest,

> if worker r is corrupt,

where > is an arbitrary vector in R
d.

7: Send g̃r(x
t) to master.

8: end for
9: At Master:

10: Receive {g̃r(x
t)}Rr=1 from the R workers.

11: Apply the decoding algorithm RGE (from [22]) on
{g̃r(x

t)}Rr=1. Let ĝ(xt) = RGE(g̃1(x
t), . . . , g̃R(x

t)).
12: Update the parameter vector:

x
t+1 = x

t − ηĝ(xt). (6)

13: Broadcast xt+1 to all workers.
14: end for

Our convergence results are for both strongly-convex and

non-convex smooth functions and are stated below.

Theorem 1 (Strongly-convex and Non-convex). Suppose an

ǫ > 0 fraction of R workers are adversarially corrupt. For an

L-smooth2 objective function F : Rd → R, let Algorithm 1

generate a sequence of iterates {xt}Tt=0 when run with a con-

stant step-size η. Fix an arbitrary constant ǫ′ > 0. If ǫ < 1
3−ǫ′,

then with probability at least 1−T exp(− ǫ′2(1−ǫ)R
16 ), we have

the following convergence guarantees:

• Strongly-convex: If F is also µ-strongly convex3 and we

take η = 1
2L , then {xt}Tt=0 satisfy

E‖xT − x∗‖2 ≤
(
1− µ

4L

)T
‖x0 − x∗‖2 + 5

µ2
Γ. (7)

If we take T ≥ log
(

µ2

Γ ‖x0 − x∗‖2
)
/log( 1

1−µ/4L ), we get

E‖xT − x∗‖2 ≤ 6
µ2Γ .

• Non-convex: If we take η = 1
4L , then {xt}Tt=0 satisfy

1

T

T∑

t=0

E‖∇F (xt)‖2 ≤ 8L2

T
‖x0 − x∗‖2 + 3Γ. (8)

If we take T ≥ 8L2‖x0−x∗‖2

Γ , we get
1
T

∑T
t=0 E‖∇F (xt)‖2 ≤ 4Γ .

In both (7) and (8), expectation is taken over the sam-

pling of mini-batch stochastic gradients. Here, Γ =
2σ2

(1−(ǫ+ǫ′))bR + 2Υ 2 with Υ = O
(
σ0

√
ǫ+ ǫ′

)
, where σ2

0 =

16σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
.

Due to lack of space, we omit the proof of Theorem 1: It

can be derived as a spacial case from our full version [24,

2F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L
2
‖y − x‖2

2
, ∀x,y ∈ Rd.

3F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2
‖y − x‖2

2
, ∀x,y ∈ Rd.



Theorem 1], which studies Byzantine-resilient SGD in a more

general heterogeneous data setting.

Analysis of the approximation error. In both parts of

Theorem 1, the approximation error Γ consists of two error

terms: First is Γ1 = O( σ2

(1−(ǫ+ǫ′))bR ), which is the standard

error arising due to stochastic sampling of gradients; and

second is Γ2 = O
(

σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
(ǫ+ ǫ′)

)
, which

is due to Byzantine attacks. Observe that both Γ1 and Γ2

decrease with the mini-batch size b and the number of workers

R, as desired, and we can make them as small as we want by

taking a sufficiently large batch size b of stochastic gradients.

Convergence rates. Note that, in the strongly-convex case,

Algorithm 1 approximately finds the optimal parameters x∗

(within Γ error, which could be a constant) “exponentially

fast”; and in the non-convex case, Algorithm 1 approximately

finds a stationary point up to the same error with “linear

speed”, i.e., with a rate of 1
T . Thus, we recover the convergence

rates of vanilla SGD (running in the Byzantine-free setting)

for both the objectives.

Corruption threshold. Our proposed algorithm can tolerate

up to 1
3 fraction Byzantine workers, which is away from the

information-theoretic optimal 1
2 fraction. The 1

3 bound comes

from the subroutine of robust mean estimation (RME) that

we use for robust gradient estimation (RGE), as explained

in Section IV. So, improved algorithms for RME that can be

adapted to our setting will directly give an improved corruption

threshold for our algorithm.

Failure probability. The failure probability of our algorithm

is at most T exp(− ǫ′2(1−ǫ)R
16 ), which is at most δ, for any δ >

0, provided we run our algorithm for T ≤ δ exp( ǫ
′2(1−ǫ)R

16 )
iterations. Though the error probability scales linearly with T ,

it also goes down exponentially with the number of workers R.

As a result, in large-scale distributed settings (e.g., federated

learning [5]), where number of workers R could be very large

(in tens of thousands, or in millions), we can get a very small

probability of error, say, 1/100, even if run our algorithm for a

very long time.

IV. ROBUST GRADIENT ESTIMATION (RGE)

We are given R gradient vectors g̃1(x
t), . . . , g̃R(x

t) ∈ R
d,

where, if the r’th worker is honest, then g̃r(x
t) = gr(x

t) is

a uniform sample from F⊗b(x); otherwise, if r’th worker is

corrupt, then g̃r(x
t) can be arbitrary. We want to output ĝ(xt),

an estimate of ∇F (x), such that ‖ĝ(x)−∇F (x)‖ is small for

all x ∈ R
d. Note that ∇F (xt) is the mean of F⊗b(x). We use

the outlier-filtering algorithm from [22] which was developed

for robust mean estimation in high dimensions, and in order

to use that we prove a concentration bound.

This problem is related to robust mean estimation (RME)

in high dimensions, in which we are given R samples in R
d

(out of which an ǫ-fraction is corrupted) from an unknown

distribution with unknown mean, and the goal is to estimate

its mean. This is a classic problem in robust statistics [25],

[26]. Until recently, all the solutions to this problem were

either computationally intractable or were very poor in terms

of the quality of the estimator produced. The method of Tukey

median [27] solves this problem with dimension-independent

error guarantees, but it is NP-hard to compute in general

[28]. On the other hand, solutions based on geometric-median,

coordinate-wise median are computationally tractable, but can

only give dimension-dependent error guarantees, which scales

as
√
d [20].

Why is robust mean estimation in high-dimensions such a

difficult problem? To understand this, assume that gradients

are distributed according to a high-dimensional Gaussian dis-

tribution N (0, I). It is a well known fact that samples from

N (0, I) lie around the annulus at a distance
√
d from the

origin, w.h.p. So, it would not be in the adversary’s best

interest to put corrupt samples far from the annulus, as they

can be trivially filtered out just based on the norm. However,

the adversary can put the corrupt samples in a concentrated

form around the annulus, which cannot be detected just based

on then norm, but can shift the sample mean away from the

true mean in an adversarially chosen direction. This makes

devising efficient decoding algorithm with good approximation

guarantees highly non-trivial.

Recently, Lai et al. [20] and Diakonikolas et al. [21] in

their breakthrough papers independently provided computa-

tionally efficient algorithms for robust mean estimation that

give dimension-independent error guarantees. Following these

papers, there has been a flurry of research improving upon their

results in various directions; see [23] and references therein.

Most of these papers focus on particular distributions, e.g.,

Gaussian, which is not applicable in our setting, as we only

assume that gradients have bounded variance. It should be

noted that the sample complexity (i.e., the number of samples

required) for robustly estimating the mean grows at least

linearly with the dimension d [20].

To map our problem to RME, note that our R samples

come from a uniform distribution over the discrete set F⊗b(x),
whose mean is equal to ∇F (x) and it has variance bounded

by σ2

b ; see (4), (5). Our goal is to estimate the mean ∇F (x).
In view of the sample complexity result in mean estimation,

it means that for robustly estimating ∇F (x), the number of

workers R should grow linearly with the dimension d. In

a distributed setup, since it is not practical to increase the

number of workers with the dimension of the problem, we

address this issue by increasing the mini-batch size b. Since

the variance of the mini-batch stochastic gradients (which are

uniform samples from F⊗b(x)) reduces as the batch-size b
increases. This implies that as we increase b, the resulting

gradients from each worker become closer to the mean than

earlier; and as we see later, this will cut down the requirement

that R grows linearly with d. Observe that it is crucial that

increasing the mini-batch size does not change the mean, as

we want to estimate ∇F (x) using F⊗b(x).
For robustly estimating the mean ∇F (x), we will use some

techniques developed by Steinhardt et al. [22]. First we define

a notion called (ǫ, δ)-resilience for a given set S , which says

that if S is resilient around a point µ (which need not be its



mean), then dropping some elements from S does not change

the concentration of the resulting set around µ by much.

Definition 1 (Resilience, [22]). A set S = {y1,y2, . . . ,ym}
of m points, each lying in R

d, is (ǫ, δ)-resilient around a point

µ ∈ R
d, if every subset T ⊆ S of cardinality at least (1−ǫ)m

satisfies

∥∥∥ 1
|T |

∑
y∈T (y − µ)

∥∥∥
2
≤ δ.

The notion of resilience is useful for us for robustly es-

timating the true gradient because (i) it is known that if a

set of points contains a resilient set around µ, then we can

estimate µ within a bounded error, and (ii) we can show that

there exists a large subset of uncorrupt gradients from the

received R stochastic gradients (out of which an ǫ fraction

is arbitrarily corrupt), that is resilient around its mean. We

make these statements precise in the subsequent discussion.

Our main result for robust gradient estimation is as follows:

Theorem 2. Fix an arbitrary x ∈ R
d. Suppose we are given

R gradients g̃1(x), . . . , g̃R(x) ∈ R
d, where g̃r(x) = gr(x) is

a uniform sample from F⊗b(x) if the r’th worker is honest,

otherwise can be arbitrary. For any constant ǫ′ > 0, we have

the following:

1) With probability 1 − exp(− ǫ′2(1−ǫ)R
16 ), there exists a

subset S of uncorrupted gradients of size (1− (ǫ+ ǫ′))R
(with gS(x) :=

1
|S|

∑
i∈|S| gi(x) being its sample mean)

such that S is (O(σ0

√
ǫ′′), ǫ′′)-resilient around gS(x) for

all ǫ′′ < 1
2 , where σ2

0 = 16σ2

ǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
.

2) If ǫ < 1
3 −ǫ′, then we can find an estimate ĝ(x) of gS(x)

such that ‖ĝ(x)− gS(x)‖ ≤ O
(
σ0

√
ǫ+ ǫ′

)
.

We prove Theorem 2 with the help of some techniques

developed in [22].

Lemma 1 (Proposition 20 in [22]). Suppose a distribution p
in R

d has bounded variance in all directions, i.e., Ey∼p[〈y−
µ,v〉2] ≤ σ2

p, ∀v ∈ R
d, ‖v‖ = 1. Then, given m samples

y1,y2, . . . ,ym ∼ p, with probability 1 − exp(−ǫ′2m/16),
there is a subset S of (1−ǫ′)m points such that 1

|S|

∑
y∈S〈y−

µ,v〉2 ≤ 4σ2

p

ǫ′

(
1 + d

(1−ǫ′)m

)
holds for all unit vectors v ∈ R

d.

Now we interpret Lemma 1 in our problem setting. Observe

that, in our problem, p is a uniform distribution over F⊗b(x).
It is easy to see that the hypothesis of Lemma 1 is satisfied

with yi = gi(x), µ = ∇F (x), and σ2
p = σ2

b :

Ey∼p[〈y − µ,v〉2]
(a)

≤ Ey∼p[‖y − µ‖2] · ‖v‖2
(b)

≤ σ2

b
,

where (a) follows from the Cauchy-Schwarz inequality and (b)

uses (5) and ‖v‖ = 1. We are given R samples, out of which

at least (1−ǫ)R are according to the correct distribution. Now,

by taking m = (1− ǫ)R, Lemma 1 implies that there exists a

subset S of uncorrupted gradients of size (1− ǫ′)(1− ǫ)R ≥
(1− (ǫ+ ǫ′))R, that satisfies

1

|S|
∑

y∈S

〈y − µ,v〉2 ≤ σ2
0 , ∀v ∈ R

d, ‖v‖ = 1, (9)

where σ2
0 = 4σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
.

Note that (9) is bounding the deviation of the points in S
from the true mean µ. However, in order to show that the set

S is resilient, we need to bound the deviation from its sample

mean. For that, define µS := 1
|S|

∑
y∈S y to be the sample

mean of S .

1

|S|
∑

y∈S

〈y − µS ,v〉2 =
1

|S|
∑

y∈S

〈y − µ+ µ− µS ,v〉2

(a)

≤ 2

|S|
∑

y∈S

〈y − µ,v〉2 + 2

|S|
∑

y∈S

〈µ− µS ,v〉2

≤ 2σ2
0 + 2〈µ− µS ,v〉2

(b)

≤ 4σ2
0 . (10)

In (a) we used the inequality (a + b)2 ≤ 2a2 + 2b2. In (b)

we used 〈µS − µ,v〉2 ≤ σ2
0 , which can be shown as follows:

〈µ − µS ,v〉2 =
[

1
|S|

∑
y∈S〈y − µ,v〉

]2 (c)

≤ 1
|S|

∑
y∈S〈y −

µ,v〉2
(d)

≤ σ2
0 , where (c) follows from the Jensen’s inequality,

and (d) follows from (9).

Having established the bound in (10), we can now show that

S is (O(σ0

√
ǫ′′), ǫ′′)-resilient around its sample mean µS for

all ǫ′′ < 1
2 ; see [24, Claim 11 in Appendix F] for a detailed

proof of this. This proves the first part of Theorem 2.

Now we show that resilience of S is information-

theoretically sufficient for robust recovery of mean ∇F (x):

Lemma 2 (Proposition 2 in [22]). Suppose that a set S̃ =
{y1, . . . ,yR} of R points in R

d contains a subset S of size

(1− ǫ̃)R that is (σ̃, ǫ̃
1−ǫ̃ )-resilient around its sample mean µS .

Then, if ǫ̃ < 1
2 , we can recover µ̂S such that ‖µ̂S−µS‖ ≤ 2σ̃.

In order to use the result of the first part of Theorem 2

in Lemma 2, ǫ̃ must satisfy ǫ̃
1−ǫ̃ < 1

2 , which is equivalent

to requiring that ǫ̃ < 1
3 . Now, substituting ǫ′′ = ǫ+ǫ′

1−ǫ−ǫ′ and

σ̃ = O
(
σ0

√
ǫ+ǫ′

1−ǫ−ǫ′

)
= O(σ0

√
ǫ+ ǫ′) proves the second

part of Theorem 2.

This completes the proof of Theorem 2.

Remark 1. Note that the algorithm of Theorem 2 for mean

estimation may be inefficient (due to the potential inefficiency

of Lemma 2), and an efficient polynomial time algorithm for

the same task can be found in [22, Theorem 7], which can

tolerate up to ǫ ≤ 1
4 − ǫ′ fraction of Byzantine workers, for

an arbitrary constant ǫ′ > 0. The reason for not giving the

efficient algorithm here is because, rather than directly giving

the algorithm, first we wanted to establish the conceptual

connection between Byzantine mini-batch SGD and the setting

of [22], and more importantly, how we can leverage their proof

technique developed for RME in our SGD framework.
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